Building Energy Use
Building energy use is affected by design features and operational systems.

- Hot Water
- Heating
- Envelope
- Cooling
Features
There are many options for the design features and building systems that need to be evaluated.

Hot Water
- Hot water use reduction
- Efficient water heating
- Solar thermal

Heating
- Standard gas boiler
- Efficient gas boiler
- Direct electric
- Heat pumps
- Solar thermal

Envelope
- Average performance double glazing
- High performance double glazing
- Triple glazing
- Wall insulation
- Roof insulation

Cooling
- Solar shading
- Natural ventilation
- Reflective surfaces
- Passive cooling
- Chiller, standard performance
- High performance chiller
Calculating Building Cost with Choices

The hard costs of the features and building systems affect the overall building construction cost.

<table>
<thead>
<tr>
<th>Hot Water</th>
<th>Heating</th>
<th>Envelope</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ Hot water use reduction</td>
<td>$ Standard gas boiler</td>
<td>$ Average performance double glazing</td>
<td>$ Solar shading</td>
</tr>
<tr>
<td>$$$ Efficient water heating</td>
<td>$ Efficient gas boiler</td>
<td>$ High performance double glazing</td>
<td>$ Natural ventilation</td>
</tr>
<tr>
<td>$$$ Solar thermal</td>
<td>$ Direct electric</td>
<td>$ Triple glazing</td>
<td>$ Reflective surfaces</td>
</tr>
<tr>
<td></td>
<td>$ Heat pumps</td>
<td>$ Wall insulation</td>
<td>$ Passive cooling</td>
</tr>
<tr>
<td></td>
<td>$$$ Solar thermal</td>
<td>$ Roof insulation</td>
<td>$$$ Chiller, standard performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$$ High performance chiller</td>
</tr>
</tbody>
</table>
Calculating Energy Use Cost from Choices

The operational costs of the features.

<table>
<thead>
<tr>
<th>Hot Water</th>
<th>Heating</th>
<th>Envelope</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water use reduction</td>
<td>Standard gas boiler</td>
<td>Average performance double glazing</td>
<td>Solar shading</td>
</tr>
<tr>
<td>Efficient water heating</td>
<td>Efficient gas boiler</td>
<td>High performance double glazing</td>
<td>Natural ventilation</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>Direct electric</td>
<td>Triple glazing</td>
<td>Reflective surfaces</td>
</tr>
<tr>
<td>Hot water use reduction</td>
<td>Heat pumps</td>
<td>Wall insulation</td>
<td>Passive cooling</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>Solar thermal</td>
<td>Roof insulation</td>
<td>Chiller, standard performance</td>
</tr>
</tbody>
</table>

- $$$$ Standard gas boiler
- $$ Efficient gas boiler
- $$ Direct electric
- $$ Heat pumps
- $$ Solar thermal
- $$$ Average performance double glazing
- $$ High performance double glazing
- $$ Triple glazing
- $$ Wall insulation
- $$ Roof insulation
- $$$ Solar shading
- $$ Natural ventilation
- $ Reflective surfaces
- 0 Passive cooling
- 0 Chiller, standard performance
- $$$ High performance chiller
Choosing Feature Options
Including capital and operational costs allows for informed choices.

<table>
<thead>
<tr>
<th>Hot Water</th>
<th>Heating</th>
<th>Envelope</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ Hot water use reduction</td>
<td>$ Standard gas boiler</td>
<td>$ Average performance double glazing</td>
<td>$ Solar shading</td>
</tr>
<tr>
<td>$$$ Efficient water heating</td>
<td>$ Efficient gas boiler</td>
<td>$ High performance double glazing</td>
<td>$ Natural ventilation</td>
</tr>
<tr>
<td>$$$ Solar thermal</td>
<td>$ Direct electric</td>
<td>$ Triple glazing</td>
<td>$ Reflective surfaces</td>
</tr>
<tr>
<td></td>
<td>$ Heat pumps</td>
<td>$ Wall insulation</td>
<td>$ Passive cooling</td>
</tr>
<tr>
<td></td>
<td>$$$ Solar thermal</td>
<td>$$$ Roof insulation</td>
<td>$$$ Chiller, standard performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$$$ High performance - $$$ chiller</td>
</tr>
</tbody>
</table>
Choosing Feature Options
Including capital and operational costs allows for informed choices.

- **Hot Water**
 - Hot water use reduction
 - Efficient water heating
 - Solar thermal

- **Heating**
 - Standard gas boiler
 - Efficient gas boiler
 - Direct electric
 - Heat pumps
 - Solar thermal

- **Envelope**
 - Average performance double glazing
 - High performance double glazing
 - Triple glazing
 - Wall insulation
 - Roof insulation

- **Cooling**
 - Solar shading
 - Natural ventilation
 - Reflective surfaces
 - Passive cooling
 - Chiller, standard performance
 - High performance - chiller

- High water use reduction
- Efficient water heating
- Solar thermal
- Standard gas boiler
- Efficient gas boiler
- Direct electric
- Heat pumps
- Solar thermal
- Average performance double glazing
- High performance double glazing
- Triple glazing
- Wall insulation
- Roof insulation
- Solar shading
- Natural ventilation
- Reflective surfaces
- Passive cooling
- Chiller, standard performance
- High performance - chiller
Offsetting Energy Use with Renewable Energy Generation

To create net zero.

- **Hot Water**
 - Hot water use reduction
 - Efficient water heating
 - Solar thermal

- **Heating**
 - Standard gas boiler
 - Efficient gas boiler
 - Direct electric
 - Heat pumps
 - Solar thermal

- **Envelope**
 - Average performance double glazing
 - High performance double glazing
 - High performance double glazing

- **Cooling**
 - Solar shading
 - Natural ventilation
 - Reflective surfaces
 - Passive cooling
 - Chiller, standard performance
 - High performance - chiller
Cheap building > Expensive running costs

(25 years)
Expensive building > Cheap running costs

(25 years)
NET PRESENT VALUE

Scenario C

Building > Zero energy costs

(25 years)
COMPARING SCENARIOS

Scenario A

- Operation Expenses
- Interest
- Inflation
- Purchase Price

Scenario B

- Operation Expenses
- Interest
- Inflation
- Purchase Price

Scenario C

NET ZERO

- Interest
- Inflation
- Purchase Price

(25 years)
MODELLING TOOLS & METHODOLOGY

- EnergyPlus, JEplus, Sketchup
ENERGY MODELLING

Mechanical System
Envelope performance
Lighting power

Interact within the energy model
Result in various Energy Use Intensities

The cost of PV was included as a variable
Each combination of systems results in a specific net present value. Associated annuity is calculated.
Select the path that fits
- Parallel Coordinates visualization
THE SOLUTION

Environmental Economic Social
AGENDA

1. What is the Process for NZE NC design
2. Energy and the Business Case
3. How did we apply it: evolv1
LESSONS LEARNED – SITE USAGE

- Parking vs. Green Space vs. Renewables
LESSONS LEARNED – SYSTEMS
LESSONS LEARNED - ONSITE PV
LESSONS LEARNED – SPACE USAGE

- Restaurant
LESSONS LEARNED – SPACE USAGE

- Lowest EUI and NPV
LESSONS LEARNED – OCCUPANT BEHAVIOR

- Densities, schedules and equipment
LESSONS LEARNED - OCCUPANT BEHAVIOR

- Densities, schedules and equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Power (W)</th>
<th>Count</th>
<th>Total Power (W)</th>
<th>Ppl / Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>24" LCD Monitor</td>
<td>30</td>
<td>49</td>
<td>1470</td>
<td>1.0</td>
</tr>
<tr>
<td>Laptop</td>
<td>25</td>
<td>49</td>
<td>1225</td>
<td>1.0</td>
</tr>
<tr>
<td>PC</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Task Light (LED)</td>
<td>6</td>
<td>49</td>
<td>294</td>
<td>1.0</td>
</tr>
<tr>
<td>Phone</td>
<td>5</td>
<td>56</td>
<td>280</td>
<td>0.9</td>
</tr>
<tr>
<td>Printer</td>
<td>110</td>
<td>2</td>
<td>220</td>
<td>24.5</td>
</tr>
<tr>
<td>Copier</td>
<td>372</td>
<td>2</td>
<td>744</td>
<td>24.5</td>
</tr>
<tr>
<td>Fax</td>
<td>55</td>
<td>1</td>
<td>55</td>
<td>49.0</td>
</tr>
<tr>
<td>Television</td>
<td>150</td>
<td>4</td>
<td>600</td>
<td>12.3</td>
</tr>
<tr>
<td>Reg Fridge</td>
<td>350</td>
<td>1</td>
<td>350</td>
<td>49.0</td>
</tr>
<tr>
<td>Server</td>
<td>524</td>
<td>1</td>
<td>524</td>
<td>49.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5762</td>
<td></td>
</tr>
<tr>
<td>Power Density</td>
<td></td>
<td></td>
<td>0.77 w/sf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Power (W)</th>
<th>Count</th>
<th>Total Power (W)</th>
<th>Ppl / Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>24" LCD Mon</td>
<td>30</td>
<td>49</td>
<td>1470</td>
<td>1.0</td>
</tr>
<tr>
<td>Laptop</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>PC</td>
<td>65</td>
<td>49</td>
<td>3185</td>
<td>1.0</td>
</tr>
<tr>
<td>Task Light (LED)</td>
<td>6</td>
<td>49</td>
<td>294</td>
<td>1.0</td>
</tr>
<tr>
<td>Phone</td>
<td>5</td>
<td>56</td>
<td>280</td>
<td>0.9</td>
</tr>
<tr>
<td>Printer</td>
<td>110</td>
<td>2</td>
<td>220</td>
<td>24.5</td>
</tr>
<tr>
<td>Copier</td>
<td>372</td>
<td>2</td>
<td>744</td>
<td>24.5</td>
</tr>
<tr>
<td>Fax</td>
<td>55</td>
<td>1</td>
<td>55</td>
<td>49.0</td>
</tr>
<tr>
<td>Television</td>
<td>150</td>
<td>4</td>
<td>600</td>
<td>12.3</td>
</tr>
<tr>
<td>Reg Fridge</td>
<td>350</td>
<td>1</td>
<td>350</td>
<td>49.0</td>
</tr>
<tr>
<td>Server</td>
<td>524</td>
<td>1</td>
<td>524</td>
<td>49.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7722</td>
<td></td>
</tr>
<tr>
<td>Power Density</td>
<td></td>
<td></td>
<td>1.03 w/sf</td>
<td></td>
</tr>
</tbody>
</table>
- Thermal Energy Demand Intensity (TEDI) = 23.8 kWh/m²
- Zone 6 < 34 kWh/m²
LESSONS LEARNED - EMBODIED CARBON

- PRODUCT (A1 to A3)
- CONSTRUCTION PROCESS (A4 & A5)
- USE - MAINTENANCE & REPLACEMENT (B2 & B4)
- USE - OPERATIONAL ENERGY USE (B6)
- END OF LIFE (C1 to C4)
LESSONS LEARNED – ZERO CARBON BALANCE

Net Emissions =
(Direct Emissions + Indirect Emissions + Biomass Emissions) −
(Avoided Emissions from Offsite Green Power +
Avoided Emissions from Exported Green Power)
LESSONS LEARNED – INTEGRATED DESIGN

- **Effort/Effect**
 - Green: Ability to impact cost and functional capabilities
 - Red: Cost of design change
 - Blue: Preferred design process
 - Black: Traditional design process

Time
- PD
- SD
- DD
- CD
- PR
- CA
- OP

Project Effort and Impact
Benefits: Leadership in ZNE

- ZNE projects have grown by 75% since 2015
BUILDING DESIGN IS CHANGING...

...AND WE'RE READY FOR IT